Amalgamated Worksheet # 1

Various Artists

April 3, 2013

1 Mike Hartglass

For all exercises, V is a finite dimensional complex vector space over \mathbb{C} 1.) Prove that if $T \in \mathcal{L}(V)$ has only one eigenvalue, then every vector $v \in V$ is a generalized eigenvector of T (*Hint*: Use the Jordan decomposition of T).

2.) For this problem, suppose that S and T are operators on a finite dimensional complex vector space V.

a.) Suppose that ST is nilpotent. Prove that TS is nilpotent.

b.) Suppose S and T are nilpotent and ST = TS. Prove that S + T is nilpotent.

c.) Suppose S and T are nilpotent. Must S + T be nilpotent? Give a proof or give a counterexample.

3.) Let V be an n-dimensional complex vector space and $T \in \mathcal{L}(V)$. Let $\lambda_1, ..., \lambda_m$ be the (distinct) eigenvalues of T (hence $m \leq n$). We know from class that if $U_k = \text{Null}(T - \lambda_k I)^n$, we have

 $V = U_1 \oplus \cdots \oplus U_n.$

a.) Prove that each U_k is invariant under T.

b.) Prove that $T - \lambda_k I$ restricted to U_k is nilpotent.

c.) Consider $E_i \in \mathcal{L}(V)$ defined by $E_i(v_1+v_2+\cdots+v_m) = v_i$ whenever $v_k \in U_k$ (notice that this is well defined by the direct sum decomposition). Prove that T commutes with each E_i .

d.) Use the $E'_i s$ to show that we can write T = D + N where D is diagonalizable and N is nilpotent with DN = ND.

2 Peyam Tabrizian

Problem 1:

Find all the generalized eigenvectors of $T \in \mathcal{L}(\mathbb{R}^3)$ defined by:

$$T(x, y, z) = (x + y + z, y + z, z)$$

Problem 2:

Suppose that $T \in \mathcal{L}(V)$ has *n* distinct eigenvalues (where n = dim(V)), and that $S \in \mathcal{L}(V)$ has the same eigenvectors as *T* (but not necessarily with the same eigenvalues). Show that ST = TS.

Problem 3:

Show that if V is a vector space over \mathbb{C} and if 0 is the only eigenvalue of $T \in \mathcal{L}(V)$, then T is nilpotent

Problem 4:

Show that if $Nul(T - \lambda I) = Nul((T - \lambda I)^2)$, then V has a basis of eigenvectors of T (that is, T, is diagonalizable)

Problem 5:

(if time permits) Suppose $T \in \mathcal{L}(V)$

- (a) Show that $T(T \lambda I)^n = (T \lambda I)^n T$.
- (b) Use (a) to show that $(T \lambda I)(T \mu I)^n = (T \mu I)^n (T \lambda I).$

Hint: For (a), expand $(T - \lambda I)^n$ out, using the fact that for some scalars a_i , we have:

$$(A+B)^k = \sum_{i=0}^k a_i A^i B^{k-i}$$

(this is called the binomial formula. Technically $a_i = \frac{k!i!}{(k-i)!}$, but you won't need this) Note: More generally, using induction, one can show (but you don't have to) that:

$$T^m (T - \lambda I)^n = (T - \lambda I)^n T^m$$

and that

$$(T - \lambda I)^m (T - \mu I)^n = (T - \mu I)^n (T - \lambda I)^m$$

where $m = 0, 1, \cdots$. Those facts are used in part 3 of Axler's paper.