Amalgamated Worksheet \# 1

Various Artists

April 3, 2013

1 Mike Hartglass

For all exercises, V is a finite dimensional complex vector space over \mathbb{C}
1.) Prove that if $T \in \mathcal{L}(V)$ has only one eigenvalue, then every vector $v \in V$ is a generalized eigenvector of T (Hint: Use the Jordan decomposition of T).
2.) For this problem, suppose that S and T are operators on a finite dimensional complex vector space V.
a.) Suppose that $S T$ is nilpotent. Prove that $T S$ is nilpotent.
b.) Suppose S and T are nilpotent and $S T=T S$. Prove that $S+T$ is nilpotent.
c.) Suppose S and T are nilpotent. Must $S+T$ be nilpotent? Give a proof or give a counterexample.
3.) Let V be an n-dimensional complex vector space and $T \in \mathcal{L}(V)$. Let $\lambda_{1}, \ldots, \lambda_{m}$ be the (distinct) eigenvalues of T (hence $m \leq n$). We know from class that if $U_{k}=$ $\operatorname{Null}\left(T-\lambda_{k} I\right)^{n}$, we have

$$
V=U_{1} \oplus \cdots \oplus U_{n} .
$$

a.) Prove that each U_{k} is invariant under T.
b.) Prove that $T-\lambda_{k} I$ restricted to U_{k} is nilpotent.
c.) Consider $E_{i} \in \mathcal{L}(V)$ defined by $E_{i}\left(v_{1}+v_{2}+\cdots+v_{m}\right)=v_{i}$ whenever $v_{k} \in U_{k}$ (notice that this is well defined by the direct sum decomposition). Prove that T commutes with each E_{i}.
d.) Use the $E_{i}^{\prime} s$ to show that we can write $T=D+N$ where D is diagonalizable and N is nilpotent with $D N=N D$.

2 Peyam Tabrizian

Problem 1:

Find all the generalized eigenvectors of $T \in \mathcal{L}\left(\mathbb{R}^{3}\right)$ defined by:

$$
T(x, y, z)=(x+y+z, y+z, z)
$$

Problem 2:

Suppose that $T \in \mathcal{L}(V)$ has n distinct eigenvalues (where $n=\operatorname{dim}(V)$), and that $S \in$ $\mathcal{L}(V)$ has the same eigenvectors as T (but not necessarily with the same eigenvalues). Show that $S T=T S$.

Problem 3:

Show that if V is a vector space over \mathbb{C} and if 0 is the only eigenvalue of $T \in \mathcal{L}(V)$, then T is nilpotent

Problem 4:

Show that if $N u l(T-\lambda I)=\operatorname{Nul}\left((T-\lambda I)^{2}\right)$, then V has a basis of eigenvectors of T (that is, T, is diagonalizable)

Problem 5:

(if time permits) Suppose $T \in \mathcal{L}(V)$
(a) Show that $T(T-\lambda I)^{n}=(T-\lambda I)^{n} T$.
(b) Use (a) to show that $(T-\lambda I)(T-\mu I)^{n}=(T-\mu I)^{n}(T-\lambda I)$.

Hint: For (a), expand $(T-\lambda I)^{n}$ out, using the fact that for some scalars a_{i}, we have:

$$
(A+B)^{k}=\sum_{i=0}^{k} a_{i} A^{i} B^{k-i}
$$

(this is called the binomial formula. Technically $a_{i}=\frac{k!i!}{(k-i)!}$, but you won't need this)
Note: More generally, using induction, one can show (but you don't have to) that:

$$
T^{m}(T-\lambda I)^{n}=(T-\lambda I)^{n} T^{m}
$$

and that

$$
(T-\lambda I)^{m}(T-\mu I)^{n}=(T-\mu I)^{n}(T-\lambda I)^{m}
$$

where $m=0,1, \cdots$. Those facts are used in part 3 of Axler's paper.

